Paper Profile


Mitigation of End Flux Peaking in CANDU Fuel Bundles using Neutron Absorbers


Documents: Full paper available in Conference Proceedings.
 
Date: Monday October 19
Time:13:50 - 14:15
 
Session:1A1: Advanced Design I
 
Authors: Dylan Pierce (Royal Military College of Canada)
Paul Chan (Royal Military College of Canada)
Wei Shen (Canadian Nuclear Safety Commission)
Abstract:

End flux peaking (EFP) is a phenomenon where a region of elevated neutron flux occurs between two adjoining fuel bundles. These peaks lead to an increase in fission rate and therefore greater heat generation. It is known that addition of neutron absorbers into fuel bundles can help mitigate EFP, yet implementation in Canada Deuterium Uranium (CANDU) type reactors using natural uranium fuel has not been pursued. Monte Carlo N-Particle code (MCNP) 6.1 was used to simulate the addition of a small amount of neutron absorbers strategically within the fuel pellets. This paper will present some preliminary results collected thus far.

Back to Top